77 research outputs found

    Benthic habitat mapping using multibeam sonar systems

    Get PDF
    The aim of this study was to develop and examine the use of backscatter data collected with multibeam sonar (MBS) systems for benthic habitat mapping. Backscatter data were collected from six sites around the Australian coastal zone using the Reson SeaBat 8125 MBS system operating at 455 kHz. Benthic habitats surveyed in this study included: seagrass meadows, rhodolith beds, coral reef, rock, gravel, sand, muddy sand, and mixtures of those habitats. Methods for processing MBS backscatter data were developed for the Coastal Water Habitat Mapping (CWHM) project by a team from the Centre for Marine Science and Technology (CMST). The CMST algorithm calculates the seafloor backscatter strength derived from the peak and integral (or average) intensity of backscattered signals for each beam. The seafloor backscatter strength estimated from the mean value of the integral backscatter intensity was shown in this study to provide an accurate measurement of the actual backscatter strength of the seafloor and its angular dependence. However, the seafloor backscatter strength derived from the peak intensity was found to be overestimated when the sonar insonification area is significantly smaller than the footprint of receive beams, which occurs primarily at oblique angles. The angular dependence of the mean backscatter strength showed distinct differences between hard rough substrates (such as rock and coral reef), seagrass, coarse sediments and fine sediments. The highest backscatter strength was observed not only for the hard and rough substrate, but also for marine vegetation, such as rhodolith and seagrass. The main difference in acoustic backscatter from the different habitats was the mean level, or angle-average backscatter strength. However, additional information can also be obtained from the slope of the angular dependence of backscatter strength.It was shown that the distribution of the backscatter. The shape parameter was shown to relate to the ratio of the insonification area (which can be interpreted as an elementary scattering cell) to the footprint size rather than to the angular dependence of backscatter strength. When this ratio is less than 5, the gamma shape parameter is very similar for different habitats and is nearly linearly proportional to the ratio. Above a ratio of 5, the gamma shape parameter is not significantly dependent on the ratio and there is a noticeable difference in this parameter between different seafloor types. A new approach to producing images of backscatter properties, introduced and referred to as the angle cube method, was developed. The angle cube method uses spatial interpolation to construct a three-dimensional array of backscatter data that is a function of X-Y coordinates and the incidence angle. This allows the spatial visualisation of backscatter properties to be free from artefacts of the angular dependence and provides satisfactory estimates of the backscatter characteristics.Using the angle-average backscatter strength and slope of the angular dependence, derived by the angle cube method, in addition to seafloor terrain parameters, habitat probability and classification maps were produced to show distributions of sand, marine vegetation (e.g. seagrass and rhodolith) and hard substrate (e.g. coral and bedrock) for five different survey areas. Ultimately, this study demonstrated that the combination of high-resolution bathymetry and backscatter strength data, as collected by MBS, is an efficient and cost-effective tool for benthic habitat mapping in costal zones

    High-frequency seafloor acoustic backscatter from coastal marine habitats of Australia.

    Get PDF
    Backscatter strength versus incidence angle has been measured from a variety of seafloor types from Australian coastal waters using a Reson Seabat 8125 multibeam echo-sounder (MBES) operating at 455 kHz. MBES surveys were carried out at six sites around Australia (between 2004 and 2006). Seafloor habitats surveyed in this study included: seagrass meadows, rhodolith beds, coral reef, rock, gravel, sand, muddy sand, and mixtures of those habitats. The highest backscatter strength was observed not only for the hard and rough substrate, but also for marine flora, such as rhodolith and seagrass. The main difference in acoustic backscatter from the different habitats was the mean level, or angle-average backscatter strength. However, additional information was also obtained from the rate of change (or slope) of backscatter strength with incidence angle. Overall, analysis of MBES backscatter data found at least six different seafloor habitats could be identified, in descending order of their average backscatter strength: 1) Rhodolith, 2) Coral, 3) Rock, 4) Seagrass, 5) sand-dominated bare (i.e. no epibenthic cover) sediment, 6) mud-dominated bare (i.e. no epibenthic cover) sediment

    Quantifying the acoustics packing density of fish schools with a multi-beam sonar

    Get PDF
    Multi-beam (swath) sonar systems provide the capability to ensonify an entire aggregation of fish in a single pass. However, estimation of abundance and discrimination between species via the use of target strength are considerably more complex than using traditional echosounders, because they ensonify targets at a much wider range of incidence angles. The beam pattern and along beam resolution of multi-beam swaths can produce individual sample volumes that are of similarmagnitude to an individual fish (particularly for large fish, say >1m in length). If individual fish can be resolved, (either as a single fish within a sample, or as multiple contiguous samples that delineate a single fish), and if one assumes that this situation applies to the whole school, acoustic packing density can be determined by dividing the volume of the school by the number of detected acoustic targets. This estimate is proportional to the actual packing density of the fish, defined asthe number of fish per unit volume of water. Acoustic backscatter of fish from a number of schools comprising different species were collected off Perth, in 2005 and 2007, using a Reson Seabat 8125 and 7125 respectively. Nearest neighbour distances of between 1 and 3 body lengths were observed and packing density of acoustic targets showed distinct variation between some species. However, schools of the same species also displayed different acoustic packing densities at differentstages of their growth and development. Such differences were more difficult to observe in schools of fewer fish because the variations in packing density had less impact on the overall volume of the smaller schools associated with fewer fish. Therefore discrimination between species was only deemed possible when surveying two species of different sized fish at the same time. Video ground truth data is recommended to confirm species composition whatever the type of schoolobserved

    Underwater noise sources in Fremantle inner harbour: dolphins, pile driving and traffic.

    Get PDF
    Underwater noise measurements were made over a period of 5 months within the Fremantle Inner Harbour (from April 1st-July 2nd, and July 26th-August 20th, 2010). Noise was recoded from a range of sources, including vessel traffic which was intense at periods, noise from trains and vehicles passing over a nearby bridge, machinery noise from regular operation of the Fremantle Port, and pile driving (either vibratory pile driving, impact pile driving, or both) recorded during wharf construction over approximately 57 days, (mainly during the months of May, July, and August). All sources recorded are common to a busy and expanding port. Noise levels in the port during periods when pile driving was not occurring were typically between 110 and 140 dB re 1μPa2 (mean squared pressure). Vibratory pile and impact pile driving increased noise levels within the Inner Harbour. Biological noises were also detected in the recordings. Dominant biological sources were snapping shrimp, followed by mulloway (Argyrosomus japonicus) chorusing in early to mid-April, and grunts from other fish species detected throughout the recordings. Indo-Pacific bottlenose dolphin (Tursiops aduncus) whistles were also detected in the noise logger recordings

    Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer

    Get PDF
    Measurements of low-frequency sound propagation over the areas of the Australian continental shelf, where the bottom sediments consist primarily of calcarenite, have revealed that acoustic transmission losses are generally much higher than those observed over other continental shelves and remain relatively low only in a few narrow frequency bands. This paper considers this phenomenon and provides a physical interpretation in terms of normal modes in shallow water over a layered elastic seabed with a shear wave speed comparable to but lower than the water-column sound speed. A theoretical analysis and numerical modeling show that, in such environments, low attenuation of underwater sound is expected only in narrow frequency bands just above the modal critical frequencies which in turn are governed primarily by the water depth and compressional wave speed in the seabed. In addition, the effect of a thin layer of harder cap-rock overlaying less consolidated sediments is considered. Low-frequency transmission loss data collected from an offshore seismic survey in Bass Strait on the southern Australian continental shelf are analyzed and shown to be in broad agreement with the numerical predictions based on the theoretical analysis and modeling using an elastic parabolic equation solution for range-dependent bathymetry

    The Spatial Variation of Acoustic Water Column Data and Its Relationship with Reef-Associated Fish Recorded by Baited Remote Underwater Stereo-Videos off the Western Australia Coast

    Get PDF
    Spatially explicit information on coral fish species abundance and distribution is required for effective management. Nonextractive techniques, including echosounders and video census, can be particularly useful in marine reserves where the use of extractive methods is restricted. This study aimed to investigate the possibility of combining echosounders and baited remote underwater stereo-videos (stereo-BRUVs) in providing more holistic information on the distribution of demersal and semidemersal reef-associated fish. The spatial distribution of fish biomass was assessed using both methods in two small areas, one in Cockburn Sound (CS), a temperate body of water, and the other in the tropical waters of the Ningaloo Marine Park (NMP). The results showed high correlations between the acoustic and stereo-BRUV data in CS, suggesting the potential use of both for a better estimation of biomass in the area. The results for the NMP showed weaker correlations between the two datasets and highlighted the high variability of the system. Further studies are required, but our initial findings suggest a potential benefit of combining both techniques in the reef-associated fish distribution assessment

    Seasonal productivity drives aggregations of killer whales and other cetaceans over submarine canyons of the Bremer Sub-Basin, south-western Australia

    Get PDF
    Cetaceans are iconic predators that serve as important indicators of marine ecosystem health. The Bremer Sub-Basin, south-western Australia, supports a diverse cetacean community including the largest documented aggregation of killer whales (Orcinus orca) in Australian waters. Knowledge of cetacean distributions is critical for managing the area’s thriving ecotourism industry, yet is largely sporadic. Here we combined aerial with opportunistic ship-borne surveys during 2015–2017 to describe the occurrence of multiple cetacean species on a regional scale. We used generalised estimating equations to model variation in killer whale relative density as a function of both static and dynamic covariates, including seabed depth, slope, and chlorophyll a concentration, while accounting for autocorrelation. Encountered cetacean groups included: killer (n ¼ 177), sperm (n ¼ 69), long-finned pilot (n ¼ 29), false killer (n ¼ 2), and straptoothed beaked (n ¼ 1) whales, as well as bottlenose (n ¼ 12) and common (n ¼ 5) dolphins. Killer whale numbers peaked in areas of low temperatures and high primary productivity, likely due to seasonal upwelling of nutrient-rich waters supporting high prey biomass. The best predictive model highlighted potential killer whale ‘hotspots’ in the Henry, Hood, Pallinup and Bremer Canyons. This study demonstrates the value of abundance data from platforms of opportunity for marine planning and wildlife management in the open ocean

    The use of singlebeam echo-sounder depth data to produce demersal fish distribution models that are comparable to models produced using multibeam echo-sounder depth

    Get PDF
    Seafloor characteristics can help in the prediction of fish distribution, which is required for fisheries and conservation management. Despite this, only 5%–10% of the world's seafloor has been mapped at high resolution, as it is a time-consuming and expensive process. Multibeam echo-sounders (MBES) can produce high-resolution bathymetry and a broad swath coverage of the seafloor, but require greater financial and technical resources for operation and data analysis than singlebeam echo-sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as only a single measurement is made from directly under the vessel. Thus, producing a continuous map requires interpolation to fill gaps between transects. This study assesses the performance of demersal fish species distribution models by comparing those derived from interpolated SBES data with full-coverage MBES distribution models. A Random Forest classifier was used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Loxodon macrorhinus, Pristipomoides multidens, and Pristipomoides typus, with depth and depth derivatives (slope, aspect, standard deviation of depth, terrain ruggedness index, mean curvature, and topographic position index) as explanatory variables. The results indicated that distribution models for A. stellatus, G. grandoculis, L. sceleratus, and L. macrorhinus performed poorly for MBES and SBES data with area under the receiver operator curves (AUC) below 0.7. Consequently, the distribution of these species could not be predicted by seafloor characteristics produced from either echo-sounder type. Distribution models for P. multidens and P. typus performed well for MBES and the SBES data with an AUC above 0.8. Depth was the most important variable explaining the distribution of P. multidens and P. typus in both MBES and SBES models. While further research is needed, this study shows that in resource-limited scenarios, SBES can produce comparable results to MBES for use in demersal fish management and conservation

    Long-term spatial variations in turbidity and temperature provide new insights into coral-algal states on extreme/marginal reefs

    Get PDF
    Globally, coral reefs are under threat, with many exhibiting degradation or a shift towards algal-dominated regimes following marine heat waves, and other disturbance events. Marginal coral reefs existing under naturally extreme conditions, such as turbid water reefs, may be more resilient than their clear water counterparts as well as offer some insight into how reefs could look in the future under climate change. Here, we surveyed 27 benthic habitats across an environmental stress gradient in the Exmouth Gulf region of north Western Australia immediately following a marine heatwave event. We used multidecadal remotely sensed turbidity (from an in-situ validated dataset) and temperature, to assess how these environmental drivers influence variability in benthic communities and coral morphology. Long-term turbidity and temperature variability were associated with macroalgal colonisation when exceeding a combined threshold. Coral cover was strongly negatively associated with temperature variability, and positively associated with depth, and wave power, while coral morphology diversity was positively associated with turbidity. While moderate turbidity (long-term average ~ 2 mg/L suspended matter) appeared to raise the threshold for coral bleaching and macroalgal dominance, regions with higher temperature variability (> 3.5 °C) appeared to have already reached this threshold. The region with the least turbidity and temperature variability had the highest amount of coral bleaching from a recent heatwave event and moderate levels of both these variables may confer resilience to coral reefs

    The use of singlebeam echo-sounder depth data to produce demersal fish distribution models that are comparable to models produced using multibeam echo-sounder depth

    Get PDF
    Seafloor characteristics can help in the prediction of fish distribution, which is required for fisheries and conservation management. Despite this, only 5%–10% of the world\u27s seafloor has been mapped at high resolution, as it is a time-consuming and expensive process. Multibeam echo-sounders (MBES) can produce high-resolution bathymetry and a broad swath coverage of the seafloor, but require greater financial and technical resources for operation and data analysis than singlebeam echo-sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as only a single measurement is made from directly under the vessel. Thus, producing a continuous map requires interpolation to fill gaps between transects. This study assesses the performance of demersal fish species distribution models by comparing those derived from interpolated SBES data with full-coverage MBES distribution models. A Random Forest classifier was used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Loxodon macrorhinus, Pristipomoides multidens, and Pristipomoides typus, with depth and depth derivatives (slope, aspect, standard deviation of depth, terrain ruggedness index, mean curvature, and topographic position index) as explanatory variables. The results indicated that distribution models for A. stellatus, G. grandoculis, L. sceleratus, and L. macrorhinus performed poorly for MBES and SBES data with area under the receiver operator curves (AUC) below 0.7. Consequently, the distribution of these species could not be predicted by seafloor characteristics produced from either echo-sounder type. Distribution models for P. multidens and P. typus performed well for MBES and the SBES data with an AUC above 0.8. Depth was the most important variable explaining the distribution of P. multidens and P. typus in both MBES and SBES models. While further research is needed, this study shows that in resource-limited scenarios, SBES can produce comparable results to MBES for use in demersal fish management and conservation
    • …
    corecore